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Abstract. Nowadays, companies are faced with demands for increasingly customised products, 
shifting from mass production to mass customisation. Thus, operators typically have to produce 
multiple product variants, often characterised by different complexity levels, while meeting quality 
standards. Companies, however, cannot only be concerned with production quality, but also with 
the quality and well-being of workers, as demanded by the human-centred paradigm of Industry 
5.0. Therefore, this paper proposes a combined analysis of (i) production quality in terms of overall 
defects generated during product variants manufacturing and (ii) human well-being in terms of 
stress response. The combination of the two indicators results in a novel tool called “Quality Map”, 
which enables the evaluation and monitoring of quality systems during the production of product 
variants from a broad standpoint. To demonstrate the viability of the method, a collaborative 
human-robot assembly is used as a case study.   
Introduction 
In recent years, the traditional approach to mass production is shifting towards mass customisation 
driven by technological advances, increased consumer demand for customisation and growing 
awareness of the environmental and social impact of mass production. However, this shift requires 
a flexible production system to adapt to product type and volume variations. Human-Robot 
Collaboration (HRC) seems to be an effective approach to achieve such mass customisation, 
combining the flexibility and versatility of operators with the precision of collaborative robots, i.e. 
cobots [1]. Interest in HRC has grown with the development of Industry 5.0, in which human well-
being is placed at the centre of production systems to provide a more sustainable manufacturing 
sector that enables mass customisation [2]. 

However, many existing approaches to HRC prioritise task completion over realising its full 
potential. To achieve a more human-centred society and industry, HRC researchers need to 
broaden their focus [3,4]. To address this issue, the paper proposes the new “Quality Map” tool, 
which combines performance-centred and human-centred perspectives to assess the quality of 
HRC systems and enable more effective human-robot collaboration. The “Quality Map” evaluates 
and monitors the quality of a production system, combining two indicators, the process quality 
indicator, and the human operator stress indicator. The Quality Map provides a comprehensive 
view of the system's overall quality during the production of different product variants and allows 
for in-progress monitoring and diagnosis. The paper presents a real-life case study of the assembly 
of electronic board variants using an HRC system, showing the potential of the Quality Map for 
identifying critical production scenarios and implementing necessary corrective actions to 
maintain the desired quality level while considering the well-being of human operators. 
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Case study 
An experimental campaign is conducted to assemble six different customised variants of electronic 
boards (from variant A to variant F) using the ARDUINO UNO starter kit (ARDUINO®), as shown 
in Fig. 1(a). This starter kit consists of three main elements: (i) the components, i.e. the parts that 
are assembled to produce the different boards, which are listed in Table 1; (ii) the microcontroller, 
i.e. a small computer that allows the circuits to function; (iii) the Breadboard, i.e. a board on which 
the actual circuit can be built. Each electronic board has a different level of complexity and allows 
real-time verification of their proper functioning, i.e., the correct assembly of the products.  

The experimental campaign to assemble the six selected electronic boards involved six skilled 
operators. The boards were assembled with the support of the UR3e cobot from Universal 
Robots™, equipped with an OnRobot RG6 gripper (OnRobot™), as shown in Fig. 1(b). The six 
operators assembled the electronic board variants randomly to avoid learning effects. The 
experimental campaign included an assembly phase and a quality control phase. In the former 
phase, the cobot passed the parts to the operator, who assembled the electronic boards following a 
strategy defined a priori according to the circuit theory [5]. The operator was in control of the 
process and activated the cobot through a pushbutton. In the quality control phase performed 
offline, an experienced external operator (different from assembly operators) checked the quality 
of the assembly, identifying any product defect which was left in the final assembly. Data about 
overall defectiveness and human stress response was collected during the trials.  

 
Fig. 1. (a) Example of an assembled electronic board (variant C) and (b) HRC workstation 

showing the single-armed UR3e cobot equipped with the OnRobot RG6 gripper. 
Table 1. Components of the six electronic board variants (A-F). 

 A B C D E F 
Long wires - 1 2 8 9 13 
Short wires 1 3 5 3 6 4 
Resistors 1 1 4 6 2 2 
Pushbuttons - 2 4 - 2 1 
LED 1 1 - 1 - - 
Phototransistor - - - 3 - - 
Potentiometer - - - - 1 1 
Piezo - - 1 - - - 
LCD - - - - - 1 
Battery snap - - - - 1 - 
DC Motor - - - - 1 - 
H-bridge - - - - 1 - 
Total parts number 3 8 16 21 23 22 
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Complexity analysis 
The scientific literature typically employs complexity as a metric to predict production 
performances, including production times and defects. In fact, a decrease in complexity is often 
found to correspond with a significant improvement in performance [6,7]. The structural 
complexity model, first introduced by Sinha et al. [8] and later adapted by Alkan and Harrison [9], 
and Verna et al. [7], is used in this study to assess the complexity of the assembly of selected 
ARDUINO products. This model defines the structural complexity of any network-based 
engineering system as a function of the complexity of individual parts (𝐶𝐶1), the pair-wise 
interaction between connected parts (𝐶𝐶2), and the effects of the system's overall topology (𝐶𝐶3). The 
structural complexity, represented as C, is a combination of these factors and can be expressed as: 

𝐶𝐶 = 𝐶𝐶1 + 𝐶𝐶2 ∙ 𝐶𝐶3.  (1) 

In Eq. (1), 𝐶𝐶1 represents the handling complexity of the product, i.e. the complexity of managing 
the individual components of a product when they are considered separately. One of the most 
accredited models to calculate a handling complexity index of individual parts is the Lucas method 
[9] based on Design For Assembly (DFA). 𝐶𝐶2 is the complexity of connections and liaisons 
between parts, calculated as the sum of the complexities of pair-wise connections existing in the 
product structure. It may be estimated by the Lucas method [9], using the symmetrical binary 
adjacency matrix of the product. Each entry in the matrix denotes an assembly link between two 
components. Finally, 𝐶𝐶3 represents the topological complexity related to the product's architectural 
pattern. It is calculated as the average of singular values of the adjacency matrix of the product [7]. 
It increases as the system topology shifts from centralised to more distributed architectures [8].  

According to increasing total assembly complexity 𝐶𝐶, Table 2 lists the complexities 𝐶𝐶1, 𝐶𝐶2 and 
𝐶𝐶3 of the selected product variants. Notably, an increase in complexity does not always imply an 
increase in the number of parts (see Table 1 for comparison). 

 
Table 2. Complexities of the six variants of electronic boards (A-F). 

 A B C D E F 
𝐶𝐶1 1.39 2.87 5.10 6.35 7.25 6.72 
𝐶𝐶2 2.98 5.44 13.84 14.58 21.79 26.02 
𝐶𝐶3 0.94 0.90 0.90 0.93 0.83 0.84 
𝐶𝐶 4.20 7.77 17.51 19.95 25.35 28.61 

HRC system quality analysis 
During the manufacturing process, quality data on the overall defectiveness of product and process 
were collected to assess the quality of the HRC system. Experimental data were then statistically 
analysed to identify and exclude any possible outliers [10]. Then, the relationship between the total 
number of defects recorded by the 6 operators for each of the 6 variants of electronic boards and 
the complexity of assembly (calculated as described in the previous section) was analysed. The 
“operator factor” was not considered in the analysis after checking its non-significance at 95% 
confidence level using a two-way ANOVA (p-value of 0.290). The Poisson regression model was 
adopted for the analysis, as total defects are count data [11]. The selection of the most appropriate 
Poisson model and link function (log, square root and identity link functions) was made based on 
Akaike's Corrected Information Criterion (AICc) and Bayesian Information Criterion (BIC), 
goodness-of-fit tests (Deviance and Pearson tests), and deviance residual plots [11].  

According to the results, the most appropriate Poisson model describing the relationship 
between defects and complexity was the one using the square root link function [11], defined as: 
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𝐷𝐷 = (𝑘𝑘1 ∙ 𝐶𝐶)2,  (2) 

where 𝐷𝐷 is the total number of defects, 𝐶𝐶 is the assembly complexity evaluated according to 
Eq. (1), and 𝑘𝑘1 is the regression coefficient. The results of the Poisson regression analysis, reported 
in Table 3 and Fig. 2(a), showed that the relationship between 𝐷𝐷 and 𝐶𝐶 was statistically significant. 
Additionally, the analysis of deviance residuals and the goodness-of-fit tests of Deviance and 
Pearson (in which p-values are higher than the significance level of 0.05) indicated that the model 
fit the data well. Furthermore, a very high value of the deviance R2 was obtained. Results obtained 
for product and process quality show that the increase in assembly complexity of the variants leads 
to an increase in total defects following a nonlinear trend. 

 
Table 3. Poisson regression output for total defects (D) vs assembly complexity (C). Model is in 

the form 𝑫𝑫 = (𝒌𝒌𝟏𝟏 ∙ 𝑪𝑪)𝟐𝟐. 

𝑘𝑘1 SE(𝑘𝑘1) Coefficient p-value Deviance R2 Goodness-of-Fit Tests 

0.079 0.004 <0.0005 99.32% Deviance Test p-value 0.619 
Pearson Test p-value 0.649 

 

 
Fig. 2. (a) Poisson regression model of total defects vs assembly complexity, and (b) nonlinear 

regression model of human stress response vs assembly complexity. 
On the other hand, physiological measures can be used to objectively assess the state of human 

well-being during production. Electrodermal activity (EDA) data are used in this study to measure 
human well-being, as they are commonly used as an indicator of human stress response [12]. The 
Empatica E4 wristband, a non-invasive biosensor that records EDA information at 4 Hz, was used 
to collect the EDA data. 

For each test performed by the operators, the raw signal was recorded and then analysed using 
the EDA Explorer software, which removes external noise and separates the EDA signal into tonic 
signals related to Skin Conductance Level (SCL) and phasic signals related to Skin Conductance 
Response (SCR) [12,13]. According to its widespread use [12], this study used the average value 
of SCR peaks amplitude as a stress indicator for each assembly operator. The peak amplitude 
values were standardised to compute the final stress indicator to remove individual differences 
between individuals. As a result, for each operator, the human stress response (𝐻𝐻𝐻𝐻𝐻𝐻) indicator 
results: 

𝐻𝐻𝐻𝐻𝐻𝐻 = �
∑ 𝑝𝑝𝑖𝑖
𝑁𝑁𝑃𝑃
𝑖𝑖=1
𝑁𝑁𝑃𝑃

 − 𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚
� ∙ 100,  (3) 
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Where 𝒑𝒑𝒊𝒊 is the amplitude of the i-th SCR peak, 𝑵𝑵𝒑𝒑 is the total number of SCR peaks during 
the assembly of a certain product variant, 𝒑𝒑𝒎𝒎𝒊𝒊𝒎𝒎 is the minimum amplitude of SRC peaks and 𝒑𝒑𝒎𝒎𝒎𝒎𝒎𝒎 
is the maximum amplitude of SRC peaks (both referring to each operator). 

Human stress response data obtained during the 36 assembly processes (i.e., the 6 product 
variants assembly performed by each of the 6 operators) are related to the assembly complexity. 
The “operator factor” was not considered in the analysis after checking its non-significance at 95% 
confidence level using a two-way ANOVA (p-value of 0.999). Fig. 2(b) represents the two-term 
power curve fitting relating human stress response and product variants assembly complexity in 
the form: 

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑘𝑘2 ∙ 𝐶𝐶𝑘𝑘3 ,  (4) 

where 𝐻𝐻𝐻𝐻𝐻𝐻 is the human stress response, C is assembly complexity evaluated according to Eq. 
(1), and 𝑘𝑘2 and 𝑘𝑘3 are the regression coefficients. This model was the best-fitting model compared 
to various linear and nonlinear models, considering the goodness-of-fit statistics and residual 
analysis [14]. The statistical significance of the parameter estimate is confirmed by verifying that 
the 95% confidence intervals for the parameters, calculated from the corresponding Standard 
Errors (SE) reported in Table 4, exclude the zero [14]. Note that nonlinear regression is preferable 
to linear quadratic regression, as using a logarithmic transformation can lead to bias in the 
predictions [15]. 

 
Table 4. Nonlinear regression output for human stress response (HSR) vs assembly complexity 

(C). Model is in the form 𝑯𝑯𝑯𝑯𝑯𝑯 = 𝒌𝒌𝟐𝟐 ∙ 𝑪𝑪𝒌𝒌𝟑𝟑. 

𝑘𝑘2 SE(𝑘𝑘2) 95% CI for 𝑘𝑘2 𝑘𝑘3 SE(𝑘𝑘3) 95% CI for 𝑘𝑘3 S 
0.019 0.020 (0.001, 0.158) 2.109 0.336 (1.444, 2.998) 4.067 

 
This result, which is one of the first attempts at studying the relationship between assembly 

complexity and human stress response, shows that as the complexity of the product assembly 
increases, the assembly process becomes more challenging and requires a higher degree of 
cognitive effort, leading to an increase more than proportional in human stress response. 
Quality Map   
This section introduces the “Quality Map”, a tool designed to synthesise previous HRC system 
quality analyses by directly relating HSR and D, regardless of the complexity of the product 
assembled. Two types of Quality Maps are proposed: one for single variant production, where each 
product is produced separately, even if it is produced several times in the HRC system, and the 
other for small-batch variant productions, where each variant is produced in small batches. Both 
types use the same tool in the use phase, but they differ in the realisation phase of the Quality Map. 

To construct the Quality Map, the following operational steps should be followed. Firstly, a set 
of historical experimental data representative of production must be collected. In the case of the 
Quality Map for single variant production, a reasonable number of products (at least about thirty, 
for robust regression parameter estimates) should be produced, and quality and human stress 
responses should be measured (as described in previous sections). On the other hand, regarding 
the Quality Map for small-batch variant production, an adequate number of production units 
should be collected for each batch (at least about fifteen units for each product type, if possible 
[14]), and the average performance measures should be obtained for each batch. As mentioned 
above, it is advisable to perform a preliminary data analysis using traditional statistical techniques 
to detect and filter outliers [10]. 
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Secondly, the model relating the two performance measures should be developed, depicting the 
system's overall quality in terms of product/process quality and human well-being. In the case 
study, when considering single variant production, the combination of the models in Eq. (2) and 
(4) leads to a linear model, by considering the goodness-of-fit statistics and residual analysis [14]. 
Fig. 3(a) depicts the prediction model relating human stress response 𝐻𝐻𝐻𝐻𝐻𝐻 with total defects 𝐷𝐷. 
On the other hand, when considering small batches of products from the same variant, average 
values of 𝐻𝐻𝐻𝐻𝐻𝐻 and 𝐷𝐷 should be obtained for each variant, and the prediction model using these 
averages should be derived. In the case study, six small batches are considered, one for each 
product variant, each consisting of six products. Fig. 3(b) illustrates the best fitting model, i.e. a 
linear regression model. Regression outputs are shown in Table 5.  

 

 
Fig. 3. Linear regression model of (a) human stress response (HSR) vs total defects (D) for 

single variant production, and (b) average human stress response (𝑯𝑯𝑯𝑯𝑯𝑯������) vs average total defects 
(𝑫𝑫�) for small-batch variant production. 

Table 5. Linear regression output for human stress response (HSR) vs total defects (D). Model is 
in the form 𝑯𝑯𝑯𝑯𝑯𝑯 = 𝒎𝒎 ∙ 𝑫𝑫. 

 a SE(a) Coefficient p-
value R2  R2 

pred. S 

Single variant production 3.821 0.278 <0.0005 84.38%  82.99% 5.243 
Small-batch variant 

production 4.257 0.294 <0.0005 97.67%  95.64% 2.127 
 
The diagnostic tool Quality Map (see Fig. 4) employs the model as a reference for prediction 

and considers the associated uncertainty range. Specifically, the two prediction limits (Lower 
Prediction Limit LPL and Upper Prediction Limit UPL) derived from the regression models, 
illustrated in Fig. 3, are used as thresholds for identifying critical products or small batches, 
respectively. Products and small batches are classified as critical if a special source of variation 
i.e., sources not inherent to the process, occurs [14]. It should be noted that negative values of LPL 
are set equal to zero being physically not possible. The two prediction limits can be calculated as 
follows: 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐻𝐻𝐻𝐻𝐻𝐻� − 𝑡𝑡1−𝛼𝛼2 ,𝑁𝑁−1�[𝐻𝐻𝑆𝑆(𝐹𝐹𝐹𝐹𝑡𝑡)]2 + 𝐻𝐻2,  𝑈𝑈𝐿𝐿𝐿𝐿 = 𝐻𝐻𝐻𝐻𝐻𝐻� + 𝑡𝑡1−𝛼𝛼2 ,𝑁𝑁−1�[𝐻𝐻𝑆𝑆(𝐹𝐹𝐹𝐹𝑡𝑡)]2 + 𝐻𝐻2,       (5) 

where 𝐻𝐻𝐻𝐻𝐻𝐻� is the predicted value of the regression curve, 𝑡𝑡1−𝛼𝛼2 ,𝑁𝑁−1 is the point of Student's t 
distribution with level of significance 𝛼𝛼 and 𝑁𝑁 − 1 degrees of freedom (where 𝑁𝑁 is the total 
number of observations), 𝐻𝐻𝑆𝑆(𝐹𝐹𝐹𝐹𝑡𝑡) is the standard error of the fit, and 𝐻𝐻 is the standard error of the 
regression [14]. 
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During the utilisation phase, when new single products or batches are produced, the observed 
(HSR, D) value is compared with the corresponding prediction limits from the Quality Map for 
single variant or small-batch variant production, respectively. Accordingly, (i) if the observed 
(HSR, D) value falls within the prediction range (LPL, UPL), the product or batch is not deemed 
critical; (ii) if the observed (HSR, D) value is higher than UPL (region A in Fig. 4) or lower than 
LPL (region B in Fig. 4), it indicates a mismatch between HSR and D and an abnormal situation is 
present, resulting in the product or batch being signalled as critical. 

 
Fig. 4. Quality Map for (a) single variant production and (b) small-batch variant production. 
The diagnostic tool has a dual purpose: to position products accurately in the Quality Map, 

aiding in quality control decisions and identifying areas for improvement, and to detect critical and 
out-of-control situations for prompt corrective action. This enables high-quality production and 
serves as an in-progress control approach. Overall, the diagnostic tool is a significant step forward 
in quality control and monitoring, providing real-time quality correction and consistent system 
quality. 
Conclusions    
This research aimed to propose a novel tool called the Quality Map, which combines two indicators 
to evaluate and monitor the quality of a production system: the overall defects generated during 
manufacturing product variants and the human stress response. The research was conducted using 
a collaborative human-robot system to assemble electronic boards as a case study to show the 
feasibility of the Quality Map approach. The Quality Map is implemented by collecting historical 
experimental data and developing a model relating the two performance measures that depict the 
system's overall quality. This tool can be utilised for both single variant production and small-
batch variant production. It is worth noting that the proposed approach is general and can be 
applied to different case studies after refining and tailoring the model parameters used to build the 
Quality Map. 

The study demonstrates that the Quality Map offers a comprehensive assessment of quality 
systems, encompassing both production/process quality and human well-being, in line with the 
human-centred approach of Industry 5.0. This highlights the significance of considering both 
technical and human factors in the quality assessment of production systems.  

The proposed approach has some limitations, such as the use of a structural complexity model 
originally designed for manual and fully automated processes, and the comparison in the Quality 
Map being based only on two indicators. Future research efforts will be aimed at overcoming these 
limitations by refining the complexity model and performing a validation using different products 
and including other environmental/economic sustainability indicators. 
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